
Abstract. We investigate, by means of classical and
quantum mechanics, how isotopic substitution (H/D)
a�ects the vibrational dynamics of HCP. The analysis of
periodic orbits, including the location of the principal
families as well as saddle node bifurcations, reveals a
totally di�erent picture for the phase-space resonance
structure for HCP and DCP. While HCP is character-
ized by a 1:2 resonance between the CP stretch and the
bending mode, DCP shows a 1:2 resonance between the
two stretching degrees of freedom. Saddle node bifurca-
tions, which are associated with large-amplitude motion
of H/D moving from the C- to the P-end, appear at
considerably higher energies in DCP than in HCP. These
results are in accord with exact quantum mechanical
calculations of the vibrational levels.
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1 Introduction

Isotopic substitution is a well-established method in
molecular spectroscopy for assigning vibrational levels
and, in general, for investigating the multi-dimensional
motion on potential energy surfaces (PES). The replace-
ment of a particular atom in a molecule by its isotope
a�ects only the kinetic part of the Hamiltonian but
leaves the PES unchanged. As a consequence, this
modi®es the fundamental vibrational frequencies and
thus changes the zero-point energy of the system. The
resulting e�ects are normally largest when hydrogen is
replaced by deuterium.

At low energies, isotopic substitution is expected to
cause only a shift of the vibrational levels but no signi-

®cant changes in the overall spectral patterns. However,
the situation might be quite di�erent if the spectrum is
governed by an anharmonic resonance (i.e., the near
degeneracy of two or more lower vibrational states);
such a resonance can be dramatically changed by iso-
topic substitution. Examples are HCO/DCO [1, 2] and
HNO/DNO [3]. Moreover, isotope substitution might
cause substantial changes in the level spectrum at higher
vibrational excitations in those cases where the kinetic
part of the Hamiltonian leads to strong couplings among
several degrees of freedom.

A molecule which has been found to show a pro-
nounced anharmonic resonance e�ect all the way from
the bottom of the potential well to high excitation en-
ergies and, in addition, peculiar nonlinear dynamics ef-
fects at high energies is phosphaethyne (HCP). In two
previous publications [4, 5] we have presented a detailed
classical and quantum mechanical study of its vibra-
tional motion up to an energy range of about 3 eV above
the minimum of the potential.

HCP has been of interest to spectroscopists for several
years. Equilibrium geometries and spectroscopic con-
stants of the ground and the ®rst excited electronic states
have been determined by electronic, vibrational, and ro-
tational spectra [6±10]. Our interest in this molecule was
particularly stimulated by the studies of Field and co-
workers [11, 12], who accessed high-lying bending vibra-
tional states by exploiting the ~Aÿ ~X and ~C ÿ ~X transition
bands. Both dispersed ¯uorescence and stimulated emis-
sion pumping (SEP) experiments were carried out.

Our previous calculations for HCP as well as exper-
imental results showed quite regular behavior up to
relatively high energies; for example, the majority of
states can be uniquely assigned by three quantum
numbers. The energy spectrum is governed, from the
lowest excited states up to very high excitation energies,
by a 1:2 anharmonic resonance between the HCP
bending and the CP stretching mode (two quanta of the
bend are almost equal to one quantum of the CP stretch)
[13, 14]. This leads to a pronounced clustering of the
states in terms of polyads [15, 16]. Families of periodic
orbits (POs) [17±20] and particularly the construction of
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a continuation/bifurcation diagram were used to predict
and assign families of wave functions localized in par-
ticular regions of con®guration space [4, 5] .

In our classical/quantum study two observations
came as a surprise. First, up to an energy of about 2.2 eV
above the minimum all wave functions as well as POs are
con®ned to a very small angular range around the linear
geometry ± despite the fact that energetically a much
wider angular range would be accessible. Second, states
and POs which slowly begin to explore the isomerization
path from H±CP to CP±H suddenly occur at a relatively
high threshold energy. These states were termed saddle
node (SN) states because they are associated with SN
bifurcations of POs. It was demonstrated that these SN
states possibly explain some of the peculiarities found in
the measured ®ne structure constants.

In the previous study of HCP we showed that the 1:2
resonance is sensitive to the mass of the light atom. The
purpose of the present article is to explore the resonance
structure of the phase space in DCP and to see how the
vibrational level pattern changes with respect to HCP.

2 Calculational methods

The PES used for the present calculations is the same as that em-
ployed for HCP and is described in Ref. [5]. This PES provides a
realistic description of the internal vibrational dynamics; however,
it is not su�ciently accurate to allow direct comparison with
experimental data. A new global ab initio PES is presently under
construction and will be published at a later date.

The classical mechanics and the quantum mechanical calcula-
tions are performed in the Jacobi coordinates R, the distance from
D to the center-of-mass of CP, r, the CP separation, and c, the
angle between the vectors R and r (with c � 0 for linear DCP). In
what follows all energies are quoted with respect to the minimum of
D+CP�re�. In this normalization the energy at the equilibrium is
ÿ5:2361 eV (R � 4:1572a0, r � 2:9444a0, c � 0). The energy and
the coordinates of the CP±D saddle point are ÿ1:8935 eV,
R � 3:5634a0, r � 3:0904a0, and c � 180�, respectively. The total
angular momentum is J � 0 in both the classical and quantum
calculations.

Periodic classical orbits are located by multiple shooting algo-
rithms and by damped and quasi-Newton iterative methods [21].
For a system with three degrees of freedom there are three families
of POs which emanate from the stable equilibrium point of the
PES. These families are called principals and correspond to the
three normal vibrational modes. By following the evolution of the
principal families with total energy, one can locate new families of
POs, which bifurcate from the parent ones; they start either with
the same periods as the original POs or multiples of them. New POs
may also appear via SN bifurcations. These bifurcations emanate
suddenly at particular excitation energies, usually as pairs of POs
with one of them being stable and the other being unstable. A PO is

stable when trajectories started close to it stay in its vicinity for all
times. On the other hand, a PO is unstable when trajectories that
are launched close to it depart exponentially, i.e., the ``distance''
between the two trajectories in phase space grows exponentially
with time. Instability may not grow simultaneously for all degrees
of freedom but only for some of them. Therefore, POs are described
as single unstable, double unstable, etc [20].

We have also performed quantum mechanical variational cal-
culations for determining the vibrational energies as well as the
corresponding wave functions. The Hamiltonian is represented in a
highly contracted/truncated 3D basis as described in detail in Ref.
[22]. The variational program requires two parameters: the energy
Ecut up to which all internally contracted basis functions are in-
cluded and the maximum distance of the dissociation coordinate,
Rmax. All other parameters are chosen automatically. In the cal-
culations we used Ecut � ÿ1:0 eV and Rmax � 6:22a0. In the present
work we analyzed only the 200 lowest quantum states or so with
energies up to about ÿ3:4 eV; for this restricted range of energies
the two parameters guarantee a convergence of at least 0:1meV.

3 Results and discussion

3.1 Vibrational states of HCP

In this section we brie¯y summarize ± for comparison
with the results for DCP ± the main conclusions of our
study of HCP.

The spectrum is governed by a 1:2 resonance between
CP stretching and HCP bending motion leading to
substantial mixing of (zero-order) local-mode states [13,
14]. This resonance appears from almost the zero-point
level and results in a spectrum which consists of clearly
de®ned polyads. The normal-mode wave functions are
highly regular, even at energies where anharmonic cou-
plings due to the potential are prominent. In terms of
POs, the anharmonic resonance is the result of a bifur-
cation of the �r�-stretching (CP vibration) family of POs,
which actually happens below the quantum mechanical
zero-point energy. The original period is doubled in this
bifurcation. The POs belonging to the new, i.e., the bi-
furcated branch, termed �r1A�, and the POs constituting
the bending family, �B�, are con®ned to the H±CP
hemisphere, i.e., the (Jacobi) angle c remains smaller
than about 40�, even if the energy is su�ciently high to
allow the isomerization path to CP±H to be followed.
The close correspondence of the POs and the quantum
wave functions guarantees the same qualitative behavior
for the quantum mechanical eigenfunctions.

States which do follow, with increasing energy, the
isomerization path all the way to the CP±H side, sud-
denly come into existence at a relatively high energy.

Table 1. Energies E, periods T , and initial conditions for selected periodic orbits (POs)

PO E/eV Ta Rb r c pR pr pc

[R] )2.526612 1.665 2.1079393 1.6653515 2.2761880 )2.2456483
[R1A] )2.5244452 2.867 2.2673398 1.7232877 2.6327799 2.2181170
[r] )2.2627475 3.215 2.3423666 1.6652200 1.5003978 5.9658228
[B] )2.6217276 9.680 1.7596965 1.6253361 0.8754786 )0.6579276 )1.2351993 1.1410343
[SN1A] )1.5284771 15.265 2.7593397 1.5670530 0.0724694 )0.5869885 0.6108876 4.4889123
[SN1B] )1.5383796 12.600 2.5931984 1.8447965 )0.07571909 0.41063180 0.4169811 5.6372880

aOne time unit corresponds to 10.18 fs
bDistances in AÊ , angle in radians
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They replace the normal-mode like �r1A� stretching
states at the bottom of the polyad. The new class of
bending states, which are called SN states, is consistent
with the appearance of POs from SN bifurcations. The
SN POs describe the isomerizing states remarkably well,
i.e., the backbones of the quantal wave functions closely
follow the �SN � POs. The ®rst SN bifurcation was lo-
cated at ÿ3:1526 eV and more were found at higher
energies.

Although direct comparison with experimental data
is not possible at present because of the limited accuracy
of the PES used, our calculations qualitatively explained
several observations such as (1) the abrupt onset of
perturbations found in the experimental SEP spectra, (2)
the existence of states with two classes of rotational
constants, and (3) the reality of states with unusually
large anharmonicities.

3.2 Vibrational states of DCP

3.2.1 The classical view

The organization of the classical phase space of DCP in
a hierarchical way is revealed by the continuation/
bifurcation diagram of POs depicted in Fig. 1. One
particular `initial' coordinate, R in the present case, of
each PO as a function of E is shown in Fig. 1a (for more
details see Ref. [5]); each point on a continuation/
bifurcation line actually corresponds to one particular
PO. The associated periods as a function of energy are
plotted in Fig. 1b. The equivalent pictures for HCP are
given in Ref. [5]. POs have been located for the energy
interval from the bottom of the potential well,
ÿ5:236 eV, up to ÿ1 eV . The continuation of a family
of POs is manifested by a continuous smooth line.
Following a similar notation as was used for HCP, we
denote the principal families by �B� for the bending
mode, �R� for the R-stretching mode, and �r� for the r-
stretching mode. The �R1A� family is a bifurcation of the
�R� principal family, and �SN1A� and �SN1B� are the two
branches of a SN bifurcation. Notice, that in the SN
bifurcation the period of one branch strongly increases
with energy while in the other branch it slightly
decreases.

Representative POs, for relatively high energies, are
shown in Figs. 2 and 3 together with contours of the
PES. The stretching POs have no extension in the
bending mode and they always remain in the (r;R; c � 0)
plane. The POs in Fig. 2 correspond to the energies
ÿ2:5266, ÿ2:5244 and ÿ2:2627 eV for the �R�, �R1A�, and
�r�-type POs, respectively. Their periods are 16.9, 29.2,
and 32.7 fs. Note that the �R� and �r� POs are almost
perpendicular to each other. The �R1A� PO is a mixture
of R and r motion. Figure 3 shows two POs of the
bending type with energies of ÿ2:6217 and ÿ1:6195 eV,
and one �SN1�-type PO with energy ÿ1:5285 eV. Their
periods are 98.6, 110.8, and 155.4 fs, respectively. Both
projections in the (R; c) and in the (r; c) plane are pre-
sented. Notice the relatively small extension of the �B�-
type POs in the angle coordinate, less than 60�, in spite
of the very high energy above the bottom of the well;

although the energy di�erence between the two orbits is
about 1 eV, they cover the same angular range. Gener-
ally, we ®nd signi®cant variation in the shape of the �B�
orbits above an energy of ÿ3:4 eV.

Fig. 1. a Continuation/bifurcation diagram showing the variation
of the initial R stretching coordinate as function of energy. For
further details see the text. b The periods (in fs) of the �B�-, �R�-,
�R1A�-, �r�- and �SN �-type periodic orbits (POs) as functions of
energy

Fig. 2. Contour plot of the HCP potential energy surface as
a function of r and R for c � 0. Energy normalization is such
that H+CP(re� corresponds to E � 0. The highest contour is for
E � 0 and the spacing is DE � 1 eV. Also shown are projections
of selected classical POs: �r�, E � ÿ2:262747 eV; �R�,
E � ÿ2:526612 eV; �R1A�, E � ÿ2:524445 eV
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Contrary to the �B� orbits, the SN PO shows a sig-
ni®cant extension in the angular coordinate, well beyond
80�. This is the characteristic behavior of the �SN � POs
found for HCP. However, unlike HCP, the �SN � POs for
DCP are like the �B�-type orbits limited in their angular
extension, at least in this energy regime. The �SN � orbits
for HCP extend much further into the CP±H hemi-
sphere, even for considerably lower energies. This is a
remarkable di�erence between HCP and DCP.

Apart from the shapes of the POS and their variation
with energy, another piece of information which can be
extracted is their stability, i.e., the behavior of trajectories
in the vicinity of the POs. The stability is re¯ected by the
eigenvalues of the monodromymatrix [20]. The �B� family
remains stable from the bottom of the potential well up to
ÿ3.15 eV where it turns to single unstable, i.e., one of the
perpendicular directions of the PO becomes unstable with
the neighboring trajectories deviating exponentially. The
eigenvalue of the monodromy matrix, which corresponds
to the unstable direction, reaches a maximum value of
57.51 at ÿ1:11 eV.

The �R� family shows an early period-doubling bi-
furcation at ÿ4.645 eV giving rise to the family which

is denoted as �R1A� in the bifurcation diagram (Fig. 1).
The �R� family remains single unstable up to ÿ3:58 eV
where it becomes stable again and then remains stable
for the whole energy interval studied. The bifurcating
family �R1A� is born stable and remains stable up to
ÿ1:7 eV where it becomes single unstable with a pos-
itive eigenvalue of the monodromy matrix equal to
2.67 at ÿ1 eV of total energy. The �r� family turns to
single unstable at ÿ3:87 eV and becomes double un-
stable at ÿ1:95 eV. However, both positive eigenvalues
of the monodromy matrix do not exceed values of 2.1
up to an energy of ÿ1 eV. In other words, the �r�
family can be considered to be stable over a very large
energy interval and the corresponding quantum states
will show this.

The ®rst SN bifurcation which we located is at
ÿ1:971 eV and it is single unstable with an eigenvalue of
60.6. This energy is only 0.08 eV below the energy of the
saddle point of the PES. The POs of this type are sym-
metric with respect to the c � 0 axis. The two branches
di�er in the second pair of their eigenvalues of the
monodromy matrix with the �SN1A� POs being single
unstable and the �SN1B� ones being double unstable. The
period at the SN bifurcation is 135.4 fs. The �SN1B�
manifold turns into single unstable at ÿ1:927 eV and it
remains single unstable above ÿ1 eV. The �SN1A� orbits
stay single unstable up to ÿ1:416 eV with a huge positive
eigenvalue of 27234. Beyond this energy they becomes
double unstable. The eigenvalue in the new unstable
direction is small, 1.75 at ÿ1 eV, whereas the eigenvalue
of the ®rst unstable direction reaches the value of 68473
at ÿ1 eV.

The above details for POs reveal the following dy-
namical picture for DCP. At some energy, the principal
families turn from stable to single unstable but with
small instability parameters. An early bifurcation ap-
pears in the �R� family and this contrasts with what we
found for HCP in which an early bifurcation in the �r�
family at ÿ4.872 eV gives rise to the 1:2 resonance be-
tween the r and c modes. For DCP, the �R1A� bifurcation
creates a 1:2 resonance between the R and r degrees of
freedom. In the following we shall see that this reso-
nance is also observed in the quantum mechanical wave
functions.

Following the POs to very high energies con®rms
that the bending motion remains con®ned to small
angles (less than 60�), as in the case of HCP (less than
40�). Extended angular motion is found only with the
appearance of the SN bifurcation, just as in the case of
HCP. However, in contrast to HCP this SN bifurcation
comes to existence at a rather high energy �ÿ1:971 eV�
and, moreover, the corresponding POs are also re-
stricted as far as the angular coordinate is concerned.
We have not searched for other SN bifurcations at
higher energies, which are expected to show bending
motions with amplitudes larger than 90�. It turns out
that for DCP there are e�ectively higher dynamical
barriers preventing isomerization from D±CP to CP±D
than in HCP. In what follows it will be shown that the
overall behaviour of the quantum wave functions can
be understood, at least qualitatively, in view of the PO
analysis.

Fig. 3a, b Contour plots of the HCP potential energy surface a as a
function of R and c for ®xed value of r and b as function of r and c
for ®xed value of R. Energy normalization is such that H+CP(re�
corresponds to E � 0. The highest contour is for E � 0 and the
spacing is DE � 1 eV. Also shown are projections of selected
classical POs: �B�, E � ÿ2:6217276 and ÿ1:6194926 eV; �SN1�,
E � ÿ1:5284771 eV
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3.2.2 The quantum mechanical view

Several hundred vibrational levels and eigenfunctions
have been computed for the rotationless DCP. In order
to provide some idea about the energy range covered, we
note that the 1000th state has an energy of ÿ2:2412 eV in
our calculation. Although we have visually examined a
few hundred wave functions, only the ®rst one hundred
states plus some especially selected ones have been
thoroughly assigned. The main purpose of this paper is
to demonstrate the gross di�erences with HCP. The level
structure and the assignments for the lower energy
regime are presented in Fig. 4. In what follows, v1, v2,
and v3 denote the number of quanta in the D±CP
stretching mode associated with R, the bending mode
associated with c, and the CP stretching mode related to
motion in r, respectively. In most cases they indicate the
number of nodes along the ``backbone'' of the respective
wave function;1;2 as will become apparent below, for
some states a di�erent assignment would be more
meaningful.

The PO analysis has shown (see, for example, the
periods in Fig. 1b) that the bending mode is quite un-
coupled from the two stretching modes. (When com-
paring the periods of the three principal families in Fig.
1b one must take into consideration that the period of
the �B�-type orbits corresponds to one bending quantum,
whereas in the quantum mechanical calculations the
energy gap between two bending levels corresponds to
two quanta.) As a consequence, the pure bending states
�0; v2; 0� remain unperturbed up to high energies. Plots
of selected pure bending wave functions are shown in
Fig. 5, the energy of the (0,16,0) level is ÿ3:1428 eV. The
wave functions behave as expected; however, it must be
underlined that, in full accordance with the POs, they
are restricted to an angular interval c smaller than 60� or
so and that increasing the energy does not force them
to extend to larger angles. Note that 60� is exactly the
angular regime where the minimum energy path in the
�R; c� plane changes direction (see Fig. 3a). It is not
surprising that such a drastic feature of the potential
might lead to some dynamical hindrance.

Because of the robustness of the bending states, it is
meaningful to sort the quantum levels according to ®xed
quantum number v2 as is done in Fig. 4. For HCP, it was
more reasonable to arrange the energies according to v1,
the quantum number associated with the H±CP
stretching mode, i.e., the mode that in HCP is weakly
coupled to the other two. The 1:2 Fermi resonance found
in the classical calculations also determines the quantum

mechanical level structure [13, 14]. Since two quanta in
the CP stretch mode are roughly equal to one quantum
in the D±CP stretching mode, the energy levels, for ®xed
value of v2, show a clearly de®ned polyad structure with
a ``polyad quantum number'' P � 2v1 � v3. The number
of levels in each block is P=2� 1 for even P and
P=2� 1=2 otherwise.

The pure �0; 0; v3� levels are the lowest ones in each
polyad, with the gap to the next higher level slowly in-
creasing with P . The corresponding wave functions have a
very simple nodal behavior which qualitatively does not
change up tohigh overtones. This robustness is in linewith
the stability of the corresponding �r�-type POs as discussed
above. Examples are shown in the left-hand panel of
Fig. 6. The wave function backbones are basically aligned
along theminimum energy path of the potential and along
the corresponding POs (compare with Fig. 2).

The situation is di�erent for pure D±CP stretching
states �v1; 0; 0�. For the lowest polyads, the (1,0,0) and
(2,0,0) levels are the highest ones within their respective
polyads and the corresponding wave functions look as
expected, i.e., they are aligned more or less perpendicu-

Fig. 4. Quantum mechanical energy level diagram. v1, v2, and v3
denote the quantum numbers in the D±CP, the bending, and the C±
P modes, respectively

1 In agreement with our previous work on HCP, the assignment of
the bending overtones is given by the number of nodes of the wave
functions in the angle interval from c � 0 to 180� rather than by the
traditional spectroscopic manner which doubles this bending
quantum number. Thus, in order to compare with other assign-
ments v2 must be doubled
2 All the wave function plots shown in this article have been
obtained from a 3D plotting routine, which allows the rotation of
objects that depend on three variables. In all cases we show one
particular contour ��R; r; c� � sin cjW�R; r; c�j2. The plots are
viewed either along the r axis (Fig. 5, left-hand panel), along the
R axis (Fig. 5, right-hand panel), or along the c axis (Figs. 6, 7)

151



lar to the �0; 0; v3� wave functions, along the �R�-type
POs, having one and two nodes, respectively (right-hand
panel of Fig. 6). However, because of anharmonicity in

the R coordinate (see, for example, the periods in Fig.
1b), the higher levels, (3,0,0) etc., move downwards
within a particular polyad and are no longer the highest
state. As a consequence, their energy separation from the
other members of the polyad becomes smaller with the
result that mixing with the one or the other neighbor
becomes substantial. For example, state (3,0,0) has some
large contribution from state (2,0,2) and likewise (4,0,0)
has a large admixture of another nearby state. This be-
havior is in full accord with the observation made in the
PO analysis, that the �R� POs are unstable between the
�R�=�R1A� bifurcation and ÿ3:58 eV. At higher energies
the �R�-type orbits become stable again and the quantum
wave functions show the same trend, namely the states
�v1 � �5; 0; 0�� become more clearly recognizable again.
The reason is probably that, due to anharmonicity, the
pure �v1; 0; 0� states shift so much down to the lower end
of the polyad that ®nally the coupling with the other
states is negligibly small.

Up to now we have discussed only the pure overtone
states �v1; 0; 0�, �0; v2; 0�, and �0; 0; v3�. There are, of
course, also clearly de®ned combination states: (1,0,1),
(1,2,1), or (0,1,5), for example. Some of these combina-
tion states are strongly mixed with other states so a
clear-cut assignment is not possible in terms of the nodal
structure of the underlying wave functions. Not sur-
prisingly, mixing becomes stronger with increasing en-
ergy. The ®rst unassigned levels start at about no. 90 or
so, at an energy only 1.1 eV above the zero-point level,
that is, much earlier than in HCP.

The classical analysis also predicted some additional
types of POs, those which bifurcate from the ones of the
�R� family and which somehow represent a mixture of
R- and r-type motion (see Fig. 2). The question is then
whether there are quantum states whose wave functions
have a similar behavior? The answer is positive! They
emanate from the �v1; 0; 1� and �v1; 0; 2� states. Examples
are depicted in Fig. 7 as functions of R and r. They
basically consist of two branches which are joined at the
inner side of the potential well. With increasing excita-

Fig. 7. Wave functions of selected R1A states. The axes range from
R � 2:5a0 to 5:5a0 and from r � 2:2a0 to 4:0a0

Fig. 5. Wave functions of selected bending overtones. The axes
range from R � 2:5a0 to 5:5a0, from r � 2:2a0 to 4:0a0, and from
c � 0 to 70�

Fig. 6. Wave functions of selected C±P stretching (left-hand panel)
and D±CP stretching (right-hand panel) overtones. The axes range
from R � 2:5a0 to 5:5a0 and from r � 2:2a0 to 4:0a0
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tion the gap between these two branches at the outer side
of the well, toward the D+CP dissociation channel,
opens considerably. The coincidence between these wave
functions and the �R1A� POs in Fig. 2, which actually
belong to a very high energy, is obvious ± even without
overlaying wave function and corresponding PO. These
wave functions represent a new family of states, a
manifold which is correctly predicted by the PO analysis.
Actually, a better nomenclature would be �P ; v2�R1A,
where P counts the number of nodes along the back-
bone, v2 is the bending quantum number, and the index
R1A is a reminder that these states are actually born at
the R=R1A bifurcation. For example, (4,0,1) and (4,0,2),
which belong to polyads 9 and 10, have 9 and 10 nodes
along the backbone, respectively.

Finally, there is the question whether �SN �-type states,
which represent large-amplitude motion of D around the
CP core, exist in the way they were predicted for HCP.
Classical mechanics predicts them to come into existence
at energies much higher than for HCP. Our present
quantum variational calculations are not accurate at
such high energies and, therefore, we cannot verify their
existence without doubt. Nevertheless, we searched for
them up to an energy of ÿ2.8 eV but did not ®nd any
evidence that similar states exist for DCP. This conclu-
sion is also in full agreement with the PO analysis.

4 Conclusions

The vibrational dynamics of HCP and DCP are
remarkably di�erent. This is demonstrated by an
analysis of the classical phase space as well as the
quantum mechanical energy spectrum and wave func-
tions. While in HCP a 1:2 resonance between the CP
stretch and the bending modes largely determines the
spectrum, in DCP it is a 1:2 resonance between the two
stretches that leaves its unique hallmark. The latter leads
to a special manifold of states, which we termed R1A
states; they combine both motion in the D±CP stretch
and the C±P stretch bond. SN states, which are
characteristic for HCP, have not been found for DCP,
at least not in the energy range considered in this work.
The classical PO analysis predicts them to occur at
energies signi®cantly higher than for HCP.

The present study once more underlines the con-
vincing relationship between POs, which manifest the
structure of classical phase space, and the quantum

mechanical spectrum. Without POs and their structural
change with energy, the interpretation of the quantum
mechanical results would be much more di�cult.
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